4.7 Article

The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells

期刊

BIOCHEMICAL PHARMACOLOGY
卷 149, 期 -, 页码 143-152

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2017.12.009

关键词

Hydrogen sulfide; Cystathionine gamma-lyase; Smooth muscle cells; Insulin-like growth factor-1/Insulin-like; growth factor-1 receptor; Proliferation

资金

  1. Canadian Institutes of Health Research
  2. Heart and Stroke Foundation of Ontario, Canada

向作者/读者索取更多资源

Hydrogen sulfide (H2S) is mostly produced by cystathionine-gamma-lyase (CSE) in vascular system and it inhibits the proliferation of vascular smooth muscle cells (SMCs). Insulin-like growth factor-1 (IGF-1), via its receptor (IGF-1R), exerts multiple physiological and pathophysiological effects on the vasculature, including stimulating SMC proliferation and migration, and inhibiting SMC apoptosis. Since H2S and IGF-1/IGF-1R have opposite effects on SMC proliferation, it becomes imperative to better understand the interaction of these two signaling mechanisms on SMC proliferation. SMCs isolated from small mesenteric arteries of CSE knockout (KO) and wild-type (WT) mice were used in the present study. The effects of IGF-1 and H2S on SMC proliferation were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. Protein expression was determined by western blot, and H2S-induced protein S-sulfhydration was assessed with a modified biotin switch assay. We found that IGF-1 dose-dependently increased the proliferation of both WT-SMCs and KO-SMCs, and this effect was more significant in KO-SMCs. Supplement of sodium hydrosulfide (NaHS) inhibited IGF-1-induced cell proliferation, while this effect was abolished by blocking IGF-1/IGF-1R signaling with picropodophyllin (PPP) or knocking out of the expression of IGF-1R. H2S significantly down-regulates the expression of 1GF-1R, stimulates IGF-1R S-sulfhydration, and attenuates the binding of IGF-1 with IGF-1R. This study provides novel insight on the involvement of IGF-1/IGF-1R in H2S-inhibited SMC proliferation and suggests H2S-based innovative treatment strategies for proliferative cardiovascular diseases such as atherosclerosis. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据