4.7 Review

Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders

期刊

BIOCHEMICAL PHARMACOLOGY
卷 153, 期 -, 页码 168-183

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2018.02.022

关键词

Membrane; Lipid; ER stress; Metabolism; Obesity

资金

  1. belgian F.R.S.-FNRS
  2. Leon Fredericq fondation from ULiege, Belgium
  3. Walloon Region

向作者/读者索取更多资源

The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle lipogenesis-ER lipid bilayer stress-lipogenesis amplifying hepatic ER pathology and the obesity linked systemic metabolic defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据