4.8 Article

Nanocellulose-laden composite polymer electrolytes for high performing lithium-sulphur batteries

期刊

ENERGY STORAGE MATERIALS
卷 3, 期 -, 页码 69-76

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ensm.2016.01.008

关键词

-

向作者/读者索取更多资源

In the endless search for superior and green power sources, lithium sulphur (Li-S) batteries held the promise of opening up a new era of long lasting and high energy storage systems for variety of applications. They might envisage remarkable benefits in utilising polymer electrolytes instead of liquids in terms of safety, low-cost and gravimetric/volumetric energy densities. In this work, for the first time, nanoscale microfibrillated cellulose-laden polymer systems are prepared using a thermally induced polymerisation process and tested as electrolyte separator in a Li-S rechargeable battery that contains sulphur-carbon composite based cathode. The polymer electrolyte demonstrates excellent ionic conductivity, thermal stability and most importantly stable interface towards lithium metal. While comparing our earlier report with non-aqueous liquid electrolyte, the present cell based on the abundant truly-natural cellulose-based polymer electrolyte as separator exhibits better cycling stability, higher specific capacity, superior Coulombic efficiency and rate capability at ambient conditions. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据