4.7 Article

Image-driven fuzzy-based system to construct as-is IFC BIM objects

期刊

AUTOMATION IN CONSTRUCTION
卷 92, 期 -, 页码 68-87

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.autcon.2018.03.034

关键词

As-is building information model (BIM) object; Industry foundation classes (IFC); Image-driven system; Neuro-fuzzy; Texture library

资金

  1. Research Grants Council Early Career Scheme of the Hong Kong Special Administrative Region, China [HKU 27203016]

向作者/读者索取更多资源

Various new data capturing technologies and object recognition systems have been developed to construct as-is building information models (BIMs) for operations and maintenance (O&M) management of existing buildings. However, a crucial challenge occurs in existing systems when semantic building information is captured under uncontrolled environmental conditions, especially in complex environments with poorly textured features (e.g., no obvious characteristics, edges, points, or lines). This study presents a semiautomatic image-driven system to recognize building objects and their materials and reviews the state-of-the-art object and material recognition methods and systems. A novel semiautomatic image-driven system was developed according to the new neuro-fuzzy framework for recognition of building objects and based on material classification procedures supported by an extensible texture library constructed to recognize their surface materials. More than 600 images were collected for the training process to develop this system, and more than 200 images were used for system verification. The results of the verification experiments show that the developed system can successfully recognize five kinds of building objects (i.e., beams, columns, windows, doors, and walls) and their corresponding surface materials from a single image taken by a handheld digital camera. Furthermore, the recognized building objects are automatically represented in industry foundation classes (IFC), a standard data schema for BIMs. The developed system is highly accurate, robust, and time-efficient for constructing as-is BIM objects in IFC and can help both BIM researchers and practitioners to develop information-rich BIMs in the O&M phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据