4.6 Article

Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions

期刊

FEBS JOURNAL
卷 283, 期 1, 页码 74-87

出版社

WILEY
DOI: 10.1111/febs.13552

关键词

bone; carbonic anhydrase; hypoxic conditions; mineralization; polyphosphate

资金

  1. ERC [268476]
  2. Deutsche Forschungsgemeinschaft [Schr 277/10-3]
  3. European Commission [268476, 604036, 311848]
  4. International Human Frontier Science Program

向作者/读者索取更多资源

Inorganic polyphosphate (polyP) is a physiological energy-rich polymer with multiple phosphoric anhydride bonds. In cells such as bone-forming osteoblasts, glycolysis is the main pathway generating metabolic energy in the form of ATP. In the present study, we show that, under hypoxic culture conditions, the growth/viability of osteoblast-like SaOS-2 cells is not impaired. The addition of polyP to those cells, administered as amorphous calcium polyP nanoparticles (aCa-polyP-NP; approximate size 100 nm), significantly increased the proliferation of the cells. In the presence of polyP, the cells produce significant levels of lactate, the end product of anaerobic glycolysis. Under those conditions, an eight-fold increase in the steady-state level of the membrane-associated carbonic anhydrase IX is found, as well as a six-fold induction of the hypoxia-inducible factor 1. Consequently, biomineral formation onto the SaOS-2 cells decreases under low oxygen tension. If the polyP nanoparticles are added to the cells, the degree of mineralization is enhanced. These changes had been measured also in human mesenchymal stem cells. The assumption that the bicarbonate, generated by the carbonic anhydrase in the presence of polyP under low oxygen, is deposited as a constituent of the bioseeds formed during initial hydroxyapatite formation is corroborated by the identification of carbon besides of calcium, oxygen and phosphorus in the initial biomineral deposit onto the cells using the sensitive technology of high-resolution energy dispersive spectrometry mapping. Based on these data, we conclude that polyP is required for the supply of metabolic energy during bone mineral formation under physiological, hypoxic conditions, acting as a metabolic fuel' for the cells to grow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据