4.7 Article

SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures

期刊

ATMOSPHERIC ENVIRONMENT
卷 180, 期 -, 页码 256-264

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2018.02.051

关键词

Secondary organic aerosol; m-Xylene; Polycyclic aromatic hydrocarbons; Two-product model; Surrogate mixture

资金

  1. W.M. Keck Foundation
  2. National Science Foundation [ATM-0449778, ATM-0901282]

向作者/读者索取更多资源

SOA formation is not well predicted in current models in urban area. The interaction among multiple anthropogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere. Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant low NO and extremely low NOx (H2O2) conditions. Addition of m-xylene suppressed SOA formation from the individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO2]/[RO2] ratio but negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing mxylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics such as f(44) versus f(43), H/C ratio, O/C ratio, and the oxidation state of the carbon ((OS) over bar (c)) were consistent with a continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from individual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据