4.6 Article

Magnetic field topology of the cool, active, short-period binary system σ2 Coronae Borealis

期刊

ASTRONOMY & ASTROPHYSICS
卷 613, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201731706

关键词

polarization; stars: activity; stars: magnetic field; stars: late-type; stars: individual: sigma(2) CrB

资金

  1. Swedish Research Council
  2. Swedish National Space Board
  3. project grant The New Milky Way from the Knut and Alice Wallenberg foundation
  4. le Programme National de Physique Stellaire (PNPS) of CNRS/INSU, France
  5. le Laboratoire d'Excellence OSUG@2020 - le programme d'Investissements d'Avenir [ANR10 LABX56]
  6. Natural Sciences and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

Aims. The goal of this work is to study the cool, active binary star sigma(2) CrB, focussing on its magnetic field. The two F9-G0 components of this system are tidally locked and in a close orbit, increasing the chance of interaction between their magnetospheres. Methods. We used Stokes IV data from the twin spectropolarimeters Narval at the TBL and ESPaDOnS at the CFHT. The leastsquares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a new binary Zeeman-Doppler imaging code to reconstruct simultaneously the magnetic topology and brightness distribution of both components of sigma(2) CrB. This analysis was carried out for two observational epochs in 2014 and 2017. Results. A previously unconfirmed magnetic field of the primary star has been securely detected. At the same time, the polarisation signatures of the secondary appear to have a systematically larger amplitude than that of the primary. This corresponds to a stronger magnetic field, for which the magnetic energy of the secondary exceeds that of the primary by a factor of 3.3-5.7. While the magnetic energy is similar for the secondary star in the two epochs, the magnetic energy is about twice as high in 2017 for the primary. The magnetic field topology of the two stars in the earlier epoch (2014) is very different. The fractions of energy in the dipole and quadrupole components of the secondary are similar and thereafter decrease with increasing harmonic angular degree l. At the same time, for the primary the fraction of energy in the dipole component is low and the maximum energy contribution comes from l = 4. However, in the 2017 epoch both stars have similar field topologies and a systematically decreasing energy with increasing l. In the earlier epoch, the magnetic field at the visible pole appears to be of opposite polarity for the primary and secondary, suggesting linked magnetospheres. The apparent rotational periods of both sigma(2) CrB components are longer than the orbital period, which we interpret as an evidence of a solar-like differential rotation. Conclusions. Despite their nearly identical fundamental parameters, the components of sigma(2) CrB system exhibit different magnetic field properties. This indicates that the magnetic dynamo process is a very sensitive function of stellar parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据