4.4 Article

Biomarkers and Metabolic Patterns in the Sediments of Evolving Glacial Lakes as a Proxy for Planetary Lake Exploration

期刊

ASTROBIOLOGY
卷 18, 期 5, 页码 586-606

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ast.2015.1342

关键词

Glacier lakes; Sedimentation; Prokaryotic metabolisms and biomarkers; Deglaciation; Life detection; Planetary exploration

资金

  1. Spanish Secretaria de Estado de Investigacion Desarrollo e Innovacion'' from the Economy and Competitiveness Ministry (MINECO) [AYA2011-24803, ESP2014-58494-R]
  2. NASA's ASTEP [10-ASTEP10-0011]

向作者/读者索取更多资源

Oligotrophic glacial lakes in the Andes Mountains serve as models to study the effects of climate change on natural biological systems. The persistent high UV regime and evolution of the lake biota due to deglaciation make Andean lake ecosystems potential analogues in the search for life on other planetary bodies. Our objective was to identify microbial biomarkers and metabolic patterns that represent time points in the evolutionary history of Andean glacial lakes, as these may be used in long-term studies as microscale indicators of climate change processes. We investigated a variety of microbial markers in shallow sediments from Laguna Negra and Lo Encanado lakes (Region Metropolitana, Chile). An on-site immunoassay-based Life Detector Chip (LDChip) revealed the presence of sulfate-reducing bacteria, methanogenic archaea, and exopolymeric substances from Gammaproteobacteria. Bacterial and archaeal 16S rRNA gene sequences obtained from field samples confirmed the results from the immunoassays and also revealed the presence of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, as well as cyanobacteria and methanogenic archaea. The complementary immunoassay and phylogenetic results indicate a rich microbial diversity with active sulfate reduction and methanogenic activities along the shoreline and in shallow sediments. Sulfate inputs from the surrounding volcanic terrains during deglaciation may explain the observed microbial biomarker and metabolic patterns, which differ with depth and between the two lakes. A switch from aerobic and heterotrophic metabolisms to anaerobic ones such as sulfate reduction and methanogenesis in the shallow shores likely reflects the natural evolution of the lake sediments due to deglaciation. Hydrodynamic deposition of sediments creates compartmentalization (e.g., sediments with different structure and composition surrounded by oligotrophic water) that favors metabolic transitions. Similar phenomena would be expected to occur on other planetary lakes, such as those of Titan, where watery niches fed by depositional events would be surrounded by a sea of hydrocarbons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据