4.7 Article

Biophysical properties of dermal building-blocks affect extra cellular matrix assembly in 3D endogenous macrotissue

期刊

BIOFABRICATION
卷 8, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5090/8/1/015010

关键词

microscaffold; ECM; tissue micromodule; in vitro tissue engineering; dermis; TOC

资金

  1. Italian Public Instruction Ministry [PON03PE_00060_3]
  2. Project POR FESR

向作者/读者索取更多资源

The fabrication of functional tissue units is one of the major challenges in tissue engineering due to their in vitro use in tissue-on-chip systems, as well as in modular tissue engineering for the construction of macrotissue analogs. In this work, we aim to engineer dermal tissue micromodules obtained by culturing human dermal fibroblasts into porous gelatine microscaffold. We proved that such stromal cells coupled with gelatine microscaffolds are able to synthesize and to assemble an endogenous extracellular matrix (ECM) resulting in tissue micromodules, which evolve their biophysical features over the time. In particular, we found a time-dependent variation of oxygen consumption kinetic parameters, of newly formed ECM stiffness and of micromodules self-aggregation properties. As consequence when used as building blocks to fabricate larger tissues, the initial tissue micromodules state strongly affects the ECM organization and maturation in the final macrotissue. Such results highlight the role of the micromodules properties in controlling the formation of three-dimensional macrotissue in vitro, defining an innovative design criterion for selecting tissue-building blocks for modular tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据