4.5 Article

Computational Modeling of Healthy Myocardium in Diastole

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 44, 期 4, 页码 980-992

出版社

SPRINGER
DOI: 10.1007/s10439-015-1403-7

关键词

Constitutive modeling; Finite element method; Left ventricle; MRI; Optimization

资金

  1. National Institutes of Health [R01 HL063954, R01 HL111090, R01 HL73021]
  2. American Heart Association [14BGIA18850020]

向作者/读者索取更多资源

In order to better understand the mechanics of the heart and its disorders, engineers increasingly make use of the finite element method (FEM) to investigate healthy and diseased cardiac tissue. However, FEM is only as good as the underlying constitutive model, which remains a major challenge to the biomechanics community. In this study, a recently developed structurally based constitutive model was implemented to model healthy left ventricular myocardium during passive diastolic filling. This model takes into account the orthotropic response of the heart under loading. In-vivo strains were measured from magnetic resonance images (MRI) of porcine hearts, along with synchronous catheterization pressure data, and used for parameter identification of the passive constitutive model. Optimization was performed by minimizing the difference between MRI measured and FE predicted strains and cavity volumes. A similar approach was followed for the parameter identification of a widely used phenomenological constitutive law, which is based on a transversely isotropic material response. Results indicate that the parameter identification with the structurally based constitutive law is more sensitive to the assigned fiber architecture and the fit between the measured and predicted strains is improved with more realistic sheet angles. In addition, the structurally based model is capable of generating a more physiological end-diastolic pressure-volume relationship in the ventricle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据