3.9 Article

Enhancing Computational Precision for Lattice Boltzmann Schemes in Porous Media Flows

期刊

COMPUTATION
卷 4, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/computation4010011

关键词

porous media; precision; lattice Boltzmann

向作者/读者索取更多资源

We reassess a method for increasing the computational accuracy of lattice Boltzmann schemes by a simple transformation of the distribution function originally proposed by Skordos which was found to give a marginal increase in accuracy in the original paper. We restate the method and give further important implementation considerations which were missed in the original work and show that this method can in fact enhance the precision of velocity field calculations by orders of magnitude and does not lose accuracy when velocities are small, unlike the usual LB approach. The analysis is framed within the multiple-relaxation-time method for porous media flows, however the approach extends directly to other lattice Boltzmann schemes. First, we compute the flow between parallel plates and compare the error from the analytical profile for the traditional approach and the transformed scheme using single (4-byte) and double (8-byte) precision. Then we compute the flow inside a complex-structured porous medium and show that the traditional approach using single precision leads to large, systematic errors compared to double precision, whereas the transformed approach avoids this issue whilst maintaining all the computational efficiency benefits of using single precision.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据