4.7 Article

Fresh and hardened properties of 3D printable cementitious materials for building and construction

期刊

出版社

ELSEVIER URBAN & PARTNER SP Z O O
DOI: 10.1016/j.acme.2017.02.008

关键词

3D concrete printing; 3D printing process; Printing direction; Rheology; Mechanical strengths

向作者/读者索取更多资源

The main advantage of 3D concrete printing (3DCP) is that it can manufacture complex, nonstandard geometries and details rapidly using a printer integrated with a pump, hosepipe and nozzle. Sufficient speed is required for efficient and fast construction. The selected printing speed is a function of the size and geometrical complexity of the element to be printed, linked to the pump speed and quality of the extruded concrete material. Since the printing process requires a continuous, high degree of control of the material during printing, high performance building materials are preferred. Also, as no supporting form-work is used for 3DCP, traditional concrete cannot be directly used. From the above discussion, it is postulated that in 3DCP, the fresh properties of the material, printing direction and printing time may have significant effect on the overall load bearing capacity of the printed objects. The layered concrete may create weak joints in the specimens and reduce the load bearing capacity under compressive, tensile and flexural action that requires stress transfer across or along these joints. In this research, the 3D printed specimens are collected in different orientations from large 3DCP objects and tested for mechanical properties. For the materials tested, it is found that the mechanical properties such as compressive and flexural strength of 3D printed specimen are governed by its printing directions. (C) 2017 Politechnika Wroclawska. Published by Elsevier Sp. z o.o. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据