4.7 Article

Feasibility study of a new concept of solar external receiver: Variable velocity receiver

期刊

APPLIED THERMAL ENGINEERING
卷 128, 期 -, 页码 335-344

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2017.08.173

关键词

Solar power tower; External tubular receiver; Variable velocity; Generation capacity; Solar field

资金

  1. Spanish government [ENE2012-34255, ENE2015-69486-R]

向作者/读者索取更多资源

The deployment of new solar power tower plants mainly depends on becoming cost-competitive with traditional forms of electricity generation. The solar field represents around 40% of the solar power tower investment cost, thus the cost reduction of such subsystems is mandatory to achieve that goal. This reduction could be done by increasing the solar flux intercepted by the receiver, which would increase the peak flux. Therefore, new concepts of solar receivers are required to accommodate such high peak flux. The proposed receiver, which withstands high peak flux, consists on a Traditional External Tubular Receiver (TETR) equipped with valves that allow the division of each panel of the receiver in two independent panels, increasing the velocity of the heat transfer fluid in specific zones of the receiver. This receiver configuration, named Variable Velocity Receiver (VVR), avoids tube overheating. Moreover, this novel receiver allows more concentrated aiming strategies, which increases the optical efficiency of the solar field and permits to reduce the number of heliostats in the field. Given a specific generation capacity, the size of the solar field required by a VVR is 12.5% smaller in comparison to a TETR. Such efficiency improvement has a negligible effect in tube mechanical stresses; even though pressure drop and parasitic consumption of the power plant increase. This new receiver configuration also gains hours of operation, even in winter: in hours with low solar irradiance all the panels can be split in two, increasing the number of passes and the velocity of the heat transfer fluid and accomplishing the transition from laminar to turbulent regime. Therefore, this receiver is able to reduce the levelized cost of energy. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据