4.7 Article

Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems

期刊

APPLIED THERMAL ENGINEERING
卷 130, 期 -, 页码 1349-1362

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2017.11.130

关键词

Latent heat thermal energy storage; Phase change materials; Natural convection; Shell and tube; Conical geometry

向作者/读者索取更多资源

The shell-and-tube latent heat thermal energy storage (LHTES) system has been widely studied. In this paper, the effect of geometric design on vertical shell and tube LHTES systems is investigated. Accordingly, cylindrical and conically shaped experimental tests are developed for this purpose. The thermal performance of the conical and cylindrical systems is compared experimentally and theoretically. The temporal variation of the experimental temperature is used to validate the mathematical model and demonstrate the effects of natural convection on heat transfer in the phase change material (PCM) during the charging and discharging processes of both systems. The melting/solidification time, liquid fraction, and stored/released energy are used to evaluate the performance of the two systems. The results show that the conical system can store thermal energy much faster than the cylindrical system at the same operating condition at a specific charging time before the system is fully charged. This is enabled since the conical design allows natural convection to dominate in a large volume of PCM at top of the container. However, there is no significant difference during the discharging process. The results indicate that the natural convection effect can be advantageously utilized by optimization of the design of the shell-and-tube LHTES system. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据