4.7 Article

Dissociation behavior of water molecules on defect-free and defective rutile TiO2 (101) surfaces

期刊

APPLIED SURFACE SCIENCE
卷 457, 期 -, 页码 295-302

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2018.06.275

关键词

Water; TiO2 (101); Dissociation; Defective TiO2; Reax force field

向作者/读者索取更多资源

In the current investigation, reactive molecular dynamics simulation has been used to study and compare the dissociation behavior of water molecules on defect-free and defective ruffle TiO2 (1 0 1) surface. According to the contour map for a water molecule on the TiO2 (1 0 1) surface, water molecules have proven to dissociate around 20 times faster in the defective surface rather than defect-free surface. In the presence of defects, the oxygen atoms near the defects have lower electrostatic potentials and therefore higher reactivity which adsorption of molecules to the defects and their vicinity increases while for the defect-free surface, water molecules are adsorbed like clusters and exhibit lower dispersion. Also investigation of the density profile has proven water molecules have better dispersion through the defective surface. Namely, presence of defects leads water molecules to be adsorbed at different spots through the surface. In addition to the density profile, dissociation of water molecules to hydroxyl groups and respective diffusion of hydrogen atoms into the surface (down to the second sub-layer) has been undertaken through inspection of contours for water molecules in the defective surface throughout the simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据