4.7 Article

ZnO:Ag nanorods as efficient photocatalysts: Sunlight driven photocatalytic degradation of sulforhodamine B

期刊

APPLIED SURFACE SCIENCE
卷 427, 期 -, 页码 863-875

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2017.09.050

关键词

ZnO; Raman; Co-precipitation; Crystal structure; Luminescence; Photocatalyst

资金

  1. Kerala State Council for Science, Technology and Environment (KSCSTE), Govt. of Kerala, India

向作者/读者索取更多资源

Visible light responsive highly photocatalytic ZnO:Ag nanorods with varying Ag concentration were synthesized via co-precipitation method. X-ray diffraction analysis and high resolution transmission electron microscopy investigations confirmed the hexagonal wurtzite phase for these ZnO:Ag nanorods with preferential growth along the (101) plane. Raman shift and luminescence measurements indicated that the incorporation of Ag influences the lattice vibrational modes; there by causing distortion in lattice, inducing silent vibrational modes and emission behavior by quenching of both the band edge and visible emissions respectively. The photocatalytic performance of these nanorods as catalysts was tested by observing the photodegradation of a representative dye pollutant, viz., sulforhodamine B under sunlight irradiation. Photocatalytic performance was evaluated by determining the rate of reaction kinetics, photodegradation efficiency and mineralization efficiency. A high rate constant of 0.552 min(-1), chemical oxygen demand value of 5.8 ppm and a mineralization efficiency of 94% were obtained when ZnO: Ag nanorods with an Ag content of 1.5 at.% were used as catalysts. The observed increase in photocatalytic efficiency with Ag content in ZnO:Ag nanorods is attributed to the electron scavenging action of silver, Schottky barrier between the Ag and ZnO interface and the better utilization of sunlight due to enhanced absorption due to plasmons in the visible region. BET analysis indicated that silver doping causes effective surface area of nanorods to increase, which in turn increases the photocatalytic efficiency. The possible mechanism for degradation of dye under sunlight irradiation is described with a schematic and the photostability of the ZnO:Ag nanorods were also tested through five repetitive cycles. This work suggests that the prepared ZnO:Ag nanorods are excellent reusable photocatalysts for the degradation of toxic organic waste in water, which causes severe threat to environment. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据