4.7 Article

Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism

期刊

APPLIED SURFACE SCIENCE
卷 437, 期 -, 页码 51-61

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.12.075

关键词

BiOBr/RGO/pg-C3N4; Z-scheme; Photocatalytic activity; Visible light driven

资金

  1. National Natural Science Foundation of China [51472133, 51308314]

向作者/读者索取更多资源

The novel BiOBr/reduced graphene oxide/protonated g-C3N4 (BiOBr/RGO/pg-C3N4) composites were successfully synthesized by using a facile solvothermal synthesis method. The structure, morphology, optical and electronic properties were explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectrochemical measurement. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of Rhodamine B (Rh B) and tetracycline hydrochloride (TC) aqueous solution under visible light irradiation (lambda > 420nm). Compared with BiOBr, protonated g-C3N4 (pg-C3N4), BiOBr/pg-C3N4 and RGO/pg-C3N4, BiOBr/RGO/pg-C3N4 composites exhibited higher photocatalytic activity. The total organic carbon (TOC) removal ratios of Rh B and TC over 10% BiOBr/RGO/pg-C3N4 were 88% and 59%, respectively. The excellent photcatalytic performance was investigated by photoluminescence spectroscopy (PL), the radical quenching and electron spin resonance experiments. A Z-scheme charge transfer mechanism was proposed, in which RGO acted as an electron transfer mediator. It was worth pointing out that the closely contacted two-dimensional interface among the BiOBr, the RGO and pg-C3N4 promoted the separation and transfer of photo-generated charge carriers, and thus enhanced the photocatalytic efficiency. (c) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据