4.7 Article

High temperature current transport in gate oxides based (GaN)/AlGaN/GaN Schottky diodes

期刊

APPLIED SURFACE SCIENCE
卷 461, 期 -, 页码 206-211

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2018.06.113

关键词

Oxide gate; AlGaN/GaN heterostructure; Schottky diode; Thermionic emission; Interface traps

资金

  1. Slovak Grant Agency for Science [2/0112/17]
  2. Agency for Research and Development [APVV-14-0613]

向作者/读者索取更多资源

We have prepared high temperature stable Schottky MOS diodes on AlGaN/GaN heterostructure with Ir-Al oxide based gate oxide layer and analyzed current transport mechanism in these diodes up to very high temperatures. The thermionic emission analysis of I-V curves gave high ideality factor in between 2 and 3 decreasing with increasing temperature. Simulation of the thermionic transport with the barrier height extracted from the measured curves and ideality factor unity gave the simulated current densities many orders of magnitude higher than experimentally measured. We explained experimental data by a bias dependent barrier height as a result of thin dielectric layer and a bias dependent charge localized in interface traps between the semiconductor and this dielectric layer. The measured data are then explained by the thin dielectric layer at the interface between (GaN)AlGaN and the metal electrode. Increasing forward voltage and moving Fermi level towards conduction band the charge in the traps becomes negative and increases the effective barrier height for electrons moving from the semiconductor into the metal. By this mechanism also a linear increase of reverse current with bias can be explained. The opposite is true for the reverse voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据