4.7 Article

New properties of Fe3O4@SnO2 core shell nanoparticles following interface charge/spin transfer

期刊

APPLIED SURFACE SCIENCE
卷 427, 期 -, 页码 192-201

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2017.07.267

关键词

Tin oxide; Magnetite; Composite nanoparticles; Magnetic semiconductors

资金

  1. MCI [PN16 30-02 05]

向作者/读者索取更多资源

The synthesis and properties of Fe3O4@SnO2 core-shell nanoparticles are reported in the present paper. To form Fe3O4@SnO2 nanocomposites (FeSn-Ox), the magnetite (Fe3O4) nanoparticles were covered with SnO2 semiconductor through the use of the seeding method followed by a thermal treatment. XRD studies reveal that the synthesized composite nanoparticles contain mainly Fe3O4 and SnO2 in different proportions depending on the preparation conditions. The composition of nanoparticles and their core-shell architecture were evidenced by XPS and confirmed by Fourier analysis of HRTEM images. Magnetic studies also indicated that FeSn-Ox samples exhibit superparamagnetic behavior at room temperature. It was found that the SnO2 shell nanocrystals contain ordered magnetic moments formed through a charge/spin transfer process across the interface (carrier-mediated ferromagnetism). The analysis of UV-vis and photoluminescence (PL) spectra of FeSn-Ox composites shows position modifications of SnO2 impurity band gap levels in accordance with the charge/spin transfer between Fe3O4 and SnO2 outer shell. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据