4.7 Article

Single fiber UV detector based on hydrothermally synthesized ZnO nanorods for wearable computing devices

期刊

APPLIED SURFACE SCIENCE
卷 428, 期 -, 页码 233-241

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2017.09.127

关键词

ZnO nanorod; Single fiber; Wearable computing device; UV detector; RF magnetron sputtering

资金

  1. Basic Science Research Program through National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2017R1D1A1B03030456]

向作者/读者索取更多资源

There has been increasing interest in zinc oxide (ZnO) based ultraviolet (UV) sensing devices over the last several decades owing to their diverse range of applications. ZnO has extraordinary properties, such as a wide band gap and high exciton binding energy, which make it a beneficial material for UV sensing device. Herein, we show a ZnO UV sensing device fabricated on a cylindrical Polyethylene terephthalate (PET) monofilament. The ZnO active layer was synthesized by hydrothermal synthesis and the Cu electrodes were deposited by radio frequency (RF) magnetron sputtering. Cu thin film was deposited uniformly on a single PET fiber by rotating it inside the sputtering chamber. Various characteristics were investigated by changing the concentration of the seed solution and the growth solution. The growth of ZnO nanorods was confirmed by Field Emission Scanning Electron Microscopy (FESEM) to see the surface state and structure, followed by X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. Also, current-voltage (I -V) curves were obtained to measure photocurrent and conductance. Furthermore, falling response time, rising response time, and responsivity were calculated by analyzing current-time (I -t) curves. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据