4.7 Article

Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification

期刊

APPLIED SOFT COMPUTING
卷 62, 期 -, 页码 203-215

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2017.09.038

关键词

Microarray data analysis; Cancer classification; Improved Binary Particle Swarm Optimization (iBPSO); Hybrid model; Gene selection; Naive-Bayes

向作者/读者索取更多资源

DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and its classification. It provides better insights of many genetic mutations occurring within a cell associated with cancer. However, thousands of gene expressions measured for each biological sample using microarray pose a great challenge. Many statistical and machine learning methods have been applied to get most relevant genes prior to cancer classification. A two phase hybrid model for cancer classification is being proposed, integrating Correlation-based Feature Selection (CFS) with improved-Binary Particle Swarm Optimization (iBPSO). This model selects a low dimensional set of prognostic genes to classify biological samples of binary and multi class cancers using NaiveBayes classifier with stratified 10-fold cross-validation. The proposed iBPSO also controls the problem of early convergence to the local optimum of traditional BPSO. The proposed model has been evaluated on 11 benchmark microarray datasets of different cancer types. Experimental results are compared with seven other well known methods, and our model exhibited better results in terms of classification accuracy and the number of selected genes in most cases. In particular, it achieved up to 100% classification accuracy for seven out of eleven datasets with a very small sized prognostic gene subset (up to <1.5%) for all eleven datasets. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据