4.5 Article

Intensity, phase, and polarization of a vector Bessel vortex beam through multilayered isotropic media

期刊

APPLIED OPTICS
卷 57, 期 9, 页码 1967-1976

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.57.001967

关键词

-

类别

资金

  1. National Natural Science Foundation of China (NSFC) [61475123, 61501350, 61571355]
  2. Natural Science Basic Research Plan in Shaanxi Province of China [2016JQ4015]
  3. 111 Project [B17035]

向作者/读者索取更多资源

This paper investigates the characteristics of reflected and transmitted fields of a vector Bessel vortex beam through multilayered isotropic media on the basis of the vector angular spectrum expansion and presents the effects of media on intensity, phase, and polarization. The method is verified by studying the reflection and transmission on a single interface at vertical incidence. For both paraxial and nonparaxial incident beam cases, numerical simulations of the field components and the time-averaged Poynting vector power density of the reflected and transmitted beams for the three-layered media are presented and discussed in detail. It is shown that as the incident angle increases, the magnitude distribution of the reflected beams illustrates significant distortions and no longer represents similar patterns to that of the incident beam, whereas the magnitude distribution of the transmitted beams can maintain similar profiles to the incident beam, apart from the notable distortion of the central ring. For the same incident angle, the effects of media on the magnitude distribution for the nonparaxial case are more evident than those for the paraxial case. The results of phase distribution and polarization of the reflected and transmitted fields show that as the incident angle increases, the distortion of the phase distribution and polarization for the reflected fields are more significant and the topological charge cannot be preserved. (C) 2018 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据