4.5 Article

Attojoule-efficient graphene optical modulators

期刊

APPLIED OPTICS
卷 57, 期 18, 页码 D130-D140

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.57.00D130

关键词

-

类别

资金

  1. Air Force Office of Scientific Research (AFOSR) [FA9550-17-1-0377, FA9550-17-P-0014]
  2. Army Research Office (ARO) [W911NF-16-2-0194]

向作者/读者索取更多资源

Electro-optic modulation is a technology-relevant function for signal keying, beam steering, or neuromorphic computing through providing the nonlinear activation function of a perceptron. With silicon-based modulators being bulky and inefficient, here we discuss graphene-based devices heterogeneously integrated. This study provides a critical and encompassing discussion of the physics and performance of graphene. We provide a holistic analysis of the underlying physics of modulators including graphene's index tunability, the underlying optical mode, and discuss resulting performance vectors for this novel class of hybrid modulators. Our results show that reducing the modal area and reducing the effective broadening of the active material are key to improving device performance defined by the ratio of energy-bandwidth and footprint. We further show how the waveguide's polarization must be in-plane with graphene, such as given by plasmonic-slot structures, for performance improvements. A high device performance can be obtained by introducing multi-or bi-layer graphene modulator designs. Lastly, we present recent results of a graphene-based hybrid-photon-plasmon modulator on a silicon platform and discuss electron beam lithography treatments for transferred graphene for the relevant Fermi level tuning. Being physically compact, this 100 aJ/bit modulator opens the path towards a novel class of attojoule efficient opto-electronics. (C) 2018 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据