4.7 Article

Enhanced electroosmotic flow in a nano-channel patterned with curved hydrophobic strips

期刊

APPLIED MATHEMATICAL MODELLING
卷 54, 期 -, 页码 567-579

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2017.10.013

关键词

Electroosmosis; Slip length; Nernst Planck equations; Curved interface; Flow enhancement

资金

  1. SERB, Government of India [EMR/2016/000185]

向作者/读者索取更多资源

We consider the electroosmotic flow (EOF) in a nano-channel in which the channel walls are modulated with a periodic array of curved hydrophobic patches. The objective is to achieve an enhanced flow compared to a slit nano-channel. The shape of the hydrophobic strips are considered to be of sinusoidal form, which resembles the situation in which the channel indentations are filled with immiscible nonconducting fluid over which the electrolyte is considered to be in metastable Cassie state. The homogeneous no-slip portions of the channel walls are considered to posses a constant surface-potential (zeta-potential) or constant surface charge density, while the hydrophobic regions are uncharged. A mathematical model based on the Nernst-Planck-Navier-Stokes equations are considered to analyze the present EOF. A coordinate transformation is adopted to map the irregular physical domain to a regular computational domain. A pressure-correction based control volume approach is adopted to solve the governing equations. We have studied the EOF by varying the amplitude of the hydrophobic region. Our results show that an enhancement in EOF compared to a slit-channel is possible when the Debye length is in the order of the channel height. The EOF in the patterned channel varies with the planform length of the hydrophobic region as well as the relative span of the slip and no-slip regions. A comparison with the pressure-driven flow is also presented to analyze the hindrance created by the electric body force of the unbalanced ions. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据