4.8 Article

Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving

期刊

APPLIED ENERGY
卷 225, 期 -, 页码 732-745

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2018.05.075

关键词

Deep learning; Deep belief network; Fault diagnosis; Energy saving; Variable refrigerant flow air-conditioning system

资金

  1. National Natural Science Foundation of China [51576074]
  2. State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation [SKLACKF201606]

向作者/读者索取更多资源

The fault diagnosis of air-conditioning systems is of great significance to the energy saving of buildings. This study proposes a novel fault diagnosis approach for building energy saving based on the deep learning method which is deep belief network, and its application potential in the air conditioning fault diagnosis field is in vestigated. Then, a parameter optimization selection strategy is developed for model optimization. Four kinds of faults of the variable flow refrigerant system under heating mode are used to evaluate the performance of the models. The fault diagnosis results show that the deep belief network model with initial parameters can be used to diagnose the faults of the variable flow refrigerant system. Through the parameter optimization selection strategy, the fault diagnosis correct rate of the optimized model is 97.7%, which is improved by 5.05% compared with the model with initial parameters. The number of hidden layers of the deep belief network model is selected to be 2 layers. This result indicates that the fault diagnosis for variable flow refrigerant systems may not require a very deep model. Additionally, the performance of the optimized deep belief network model is compared with that of the traditional back propagation neural network, and the former is better. This finding also shows that the unsupervised restricted Boltzmann machine layer for data feature reconstruction can improve the fault diagnosis performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据