4.8 Article

Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation

期刊

APPLIED ENERGY
卷 225, 期 -, 页码 912-921

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2018.05.082

关键词

Iron-based oxygen carriers; Chemical looping hydrogen generation; Carbon deposition; Reduction stability

资金

  1. National Natural Science Foundation of China [51606038]
  2. Natural Science Foundation of Jiangsu [BK20160672]

向作者/读者索取更多资源

Chemical looping hydrogen generation is a promising technology which has the potential to efficiently produce hydrogen and capture CO2 with the aid of iron-based oxygen carriers. The properties of the iron-based oxygen carrier, such as carbon resistance, redox activity, and cycle stability, are critical factors for the development of CLHG process. In this study, four different supports, MgAl2O4, CeO2, ZrO2, and CeZrO4, were incorporated with iron oxide by a co-precipitation method. The reduction activity, carbon resistance and redox stability of the oxygen carriers with methane were investigated in a bench-scale fluidized bed reactor. The redox activity and oxygen transfer capacity were also tested by temperature programmed reduction (TPR) and temperature programmed oxidation (TPO). Carbon formation was observed during the reduction period through the methane decomposition reaction. It was revealed that the carbon resistance of the oxygen carriers was partially determined by the oxygen transfer capacity. For the fresh oxygen carriers, the incorporation of MgAl2O4 led to a better carbon resistance because more lattice oxygen can be released compared to the other supports before carbon deposition. After 10 redox cycles, the Fe2O3/CeZrO4 oxygen carrier performs the best oxygen transfer capacity, but the oxygen transfer capacity of the Fe2O3/MgAl2O4 oxygen carrier reduced obviously. In addition, the specific surface area could dramatically affect the reduction activity of the oxygen carriers. Crystalline graphite was observed on the reduced oxygen earners, which posed a negative effect on the reduction activity, leading to sintering of the oxygen carriers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据