4.7 Article Proceedings Paper

Effects of charge density on the hydration of siloxane surface of montmorillonite: A molecular dynamics simulation study

期刊

APPLIED CLAY SCIENCE
卷 159, 期 -, 页码 10-15

出版社

ELSEVIER
DOI: 10.1016/j.clay.2017.09.005

关键词

Montmorillonite; Charge density; Hydration; Molecular dynamics simulation

资金

  1. CAS/SAFEA International Partnership Program for Creative Research Teams [20140491534]
  2. National Natural Science Foundation of China [41602034, 41502031]

向作者/读者索取更多资源

The physicochemical properties of clay minerals strongly depend on their hydration characteristics which therefore have drawn great concerns from different research communities. In the present work, the effects of charge density of montmorillonite (Mt) on the hydration characteristics of its interlayer spaces, particularly the siloxane surface, were studied using classical molecular dynamics (MD) simulations. Four Mt. models with various octahedral charges are established, and these charges are compensated with tetramethylammonium cation (TMA). The simulation results showed that water molecules within the hydration layer of siloxane surface will donate hydrogen atoms to form H-bond with the surface oxygen atoms, while those surrounding TMA only slightly have their oxygen atoms point towards TMA. In addition, water molecules prefer to first hydrate the siloxane surface and then the TMA as the water content increases. These findings indicate that water molecules have stronger hydration interaction with siloxane surface than with TMA, and TMA can be ideal counterbalance cation in terms of studying the hydration characteristics of siloxane surface. Charge density can significantly influence the hydration of TMA-Mt. Although increasing charge density will not lead to the formation of stronger H-bond (i.e., no obvious reduction of H-bond length) between water molecules and siloxane surface, water molecules are more likely to be drawn to the siloxane surface and form more H-bonds between them. Subsequently, the hydration energy increases and the mobility of water molecules decreases as the charge density rises. These findings show that charge density can evidently influence the hydrophobicity of siloxane surface, which may further influence its interaction with organic species, e.g., the adsorption of organic contaminants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据