4.8 Article

Cobalt phosphide nanowires as efficient co-catalyst for photocatalytic hydrogen evolution over Zn0.5Cd0.5S

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 230, 期 -, 页码 210-219

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2018.02.043

关键词

CoP nanowires; DFT; Co-catalyst; Charge separation and transfer; Photocatalytic hydrogen production

资金

  1. National Natural Science Foundation of China [21677080, 21722702]
  2. Ministry of Education, People's Republic of China as an innovative team rolling project [IRT_17R58]
  3. 111 program [T2017002]
  4. special funds for basic scientific research services of central colleges and universities
  5. Natural Science Foundation of Tianjin [15JCYBJC48400, 15JCZDJC41200, 16YFXTSF00440, 16ZXGTSF00020, 16YFZCSF00300]

向作者/读者索取更多资源

Previous studies have shown that co-catalysts play a pivotal role for improving both the activity and reliability of semiconductors in photocatalytic hydrogen production, however, designing highly efficient and cost-effective co-catalysts to replace expensive and rare metals is still a big challenge. In this work, DFT (density functional theory) is utilized to guide the application of CoP NWs (nanowires) as an earth-abundant co-catalyst for photocatalytic hydrogen production. Metallic 1D CoP NWs is rationally integrated with Zn0.5Cd0.5S solid solution semiconductor for the first time, to induce a remarkably improved photocatalytic hydrogen production activity of 12,175.8 mu mol h(-1) g(-1), which is 22 times higher than that of the pristine Zn0.5Cd0.5S. This outstanding activity benefits from the collaborative advantages of excellent metallic conductivity and the rigid 1D nanostructure of CoP NWs. Moreover, the mechanism investigations demonstrate that this excellent activity arises from the strong electronic coupling, favourable band structure, highly efficient charge separation and migration based on the powerful characterizations, such as time-resolved PL decay spectra and photoelectrochemical methodology. This work brings new opportunities to employ 1D co-catalysts on photocatalysts for improving the catalytic activities in hydrogen production from water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据