4.6 Article

Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities

期刊

JOURNAL OF NANOSTRUCTURE IN CHEMISTRY
卷 6, 期 2, 页码 159-169

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s40097-016-0191-4

关键词

CPHE-AgNPs; Antimicrobial activity; Multidrug resistance; Paint additive; Antioxidant; Larvicidal

向作者/读者索取更多资源

The present investigation reports utility of cocoa pod husk extract (CPHE), an agro-waste in the biosynthesis of silver nanoparticles (AgNPs) under ambient condition. The synthesized CPHE-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, Energy dispersive X-ray (EDX) spectroscopy and transmission electron microscopy. The feasibility of the CPHE-AgNPs as antimicrobial agent against some multidrug-resistant clinical isolates, paint additive, and their antioxidant and larvicidal activities were evaluated. CPHE-AgNPs were predominantly spherical (size range of 4-32 nm) with face-centered cubic phase and crystalline conformation pattern revealed by selected area electron diffraction, while EDX analysis showed the presence of silver as a prominent metal. The synthesized nanoparticles effectively inhibited multidrug-resistant isolates of Klebsiella pneumonia and Escherichia coli at a concentration of 40 mu g/ml, and enhanced the activities of cefuroxime and ampicillin in synergistic manner at 42.9-100 % concentration, while it completely inhibited the growth of E. coli, K. pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus flavus, Aspergillus fumigatus and Aspergillus niger as additive in emulsion paint. The antioxidant activities of the CPHE-AgNPs were found to be excellent, while highly potent larvicidal activities against the larvae of Anopheles mosquito at 10-100 mu g/ml concentration were observed. Our study demonstrated for the first time the utility of CPHE in the biosynthesis of CPHE-AgNPs with potential applications as antimicrobial and larvicidal agents, and paint additives for coating material surfaces to protect them against microbial growth while improving their shelf life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据