4.8 Article

Calcined layered double hydroxides/reduced graphene oxide composites with improved photocatalytic degradation of paracetamol and efficient oxidation-adsorption of As(III)

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 225, 期 -, 页码 550-562

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2017.12.003

关键词

Calcined layered double hydroxides; Reduced graphene oxide; Photocatalysis; Oxidation-adsorption

资金

  1. National Natural Science Foundation of China [41372241]
  2. International Science and Technology Cooperation Program of China [2016YFE0123700]

向作者/读者索取更多资源

The coexistence of pharmaceuticals and arsenic in natural water may exhibit a synergistic toxic effect on humans or animals. Therefore, efficient simultaneous removal of pharmaceuticals (paracetamol as a target pollutant) and arsenic from water has received increasing attention. In this study, the novel calcined ZnFe-layered double hydroxides/reduced graphene oxide (ZnFe-CLDH/RGO) composites are fabricated via a hydrothermal-calcination method. The obtained ZnFe-CLDH/RGO composites exhibit significantly improved photocatalytic performance toward degradation of paracetamol as compared to the pristine ZnFe-CLDH. The photocatalytic activity of the screened ZnFe-CLDH/RGO30 material for paracetamol degradation is about 3.5 times that of ZnFe-CLDH. The improved photocatalytic activity could be attributed to the RGO, which could lead to increased pollutant adsorption capacity and enhanced charge separation efficiency. The magnetic ZnFe-CLDH/RGO composite also shows excellent stability and reusability as a promising photocatalyst. For As(III) removal, the ZnFe-CLDH/RGO composite displays better removal efficiency in the light than in the dark. It should be ascribed to the synergy of photocatalytic oxidation of As(III) to less toxic As(V) and the accompanying arsenic adsorption. Interestingly, our study indicates that the paracetamol degradation in the mixed system of paracetamol/As(III) is more efficient than that in the single system of paracetamol. Meanwhile, arsenic can be also efficiently removed from the water samples with coexistent paracetamol and As(III) species. This work may provide a promising composite for the efficient simultaneous elimination of water environmental inorganic anions and organic pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据