4.6 Article

Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: Effect of the core composition on the activity towards oxygen reduction reactions

期刊

APPLIED CATALYSIS A-GENERAL
卷 562, 期 -, 页码 250-257

出版社

ELSEVIER
DOI: 10.1016/j.apcata.2018.06.018

关键词

Palladium alloy; Core-shell catalyst; Membrane electrode assembly; Oxygen reduction reaction; High-temperature polymer electrolyte membrane fuel cell

资金

  1. National Research Foundation of Korea [NRF-2016M1A2A2937159]
  2. GIST Research Institute (GRI)

向作者/读者索取更多资源

Pd-based core-shell alloy-supported catalysts were prepared sequentially via a microwave-assisted polyol method and galvanic replacement. To investigate the effect of the core composition on the catalytic activity of such catalysts, three different Pd alloy cores (PdNi, PdCu, and PdNiCu) were prepared on carbon supports using a polyol method. Then, Pd and Er were introduced simultaneously to form shells on the Pd alloy cores by galvanic replacement in aqueous solution, thereby producing catalysts designated as PdNi@PdIr/C, PdCu@PdIr/C, and PdNiCu@PdIr/C. X-ray diffraction revealed that all three catalysts exhibited the face-centered cubic structure of Pd without the presence of individual phases for Ni, Cu, and Ir. The core-shell structure of the Pd-based alloy nanoparticles on the carbon support was verified by the electron energy loss spectroscopy line profile of a 25 nm nanoparticle of PdNiCu@PdIr/C. Among the three Pd-based core-shell catalysts, the highest electrochemical surface area and oxygen reduction reaction (ORR) activity was observed for PdNiCu@PdIr/C. In addition, the membrane electrode assembly employing the PdNiCu@PdIr/C catalyst displayed a significantly improved voltage compared to the other two catalysts under high-temperature polymer electrolyte membrane fuel cell conditions at 150 degrees C. Single-cell durability tests conducted to measure the voltage change at a constant current density of 0.2 A cm(-2) showed a decay ratio of 12.3 V h(-1). These results suggest that the composition of the core in core-shell nanoparticles has an important influence on both the electronic properties in the Pd alloy core and compressive lattice strain on the PdIr shell. Control of these synergistic effects provides a new approach for developing catalysts with high ORR activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据