4.4 Article

Presence of microplastics and nanoplastics in food, with particular focus on seafood

期刊

EFSA JOURNAL
卷 14, 期 6, 页码 -

出版社

WILEY
DOI: 10.2903/j.efsa.2016.4501

关键词

microplastic; nanoplastic; food; seafood; occurrence

向作者/读者索取更多资源

Following a request from the German Federal Institute for Risk Assessment (BfR), the EFSA Panel for Contaminants in the Food Chain was asked to deliver a statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. Primary microplastics are plastics originally manufactured to be that size, while secondary microplastics originate from fragmentation. Nanoplastics can originate from engineered material or can be produced during fragmentation of microplastic debris. Microplastics range from 0.1 to 5,000 mu m and nanoplastics from approximately 1 to 100 nm (0.001-0.1 mu m). There is no legislation for microplastics and nanoplastics as contaminants in food. Methods are available for identification and quantification of microplastics in food, including seafood. Occurrence data are limited. In contrast to microplastics no methods or occurrence data in food are available for nanoplastics. Microplastics can contain on average 4% of additives and the plastics can adsorb contaminants. Both additives and contaminants can be of organic as well of inorganic nature. Based on a conservative estimate the presence of microplastics in seafood would have a small effect on the overall exposure to additives or contaminants. Toxicity and toxicokinetic data are lacking for both microplastics and nanoplastics for a human risk assessment. It is recommended that analytical methods should be further developed for microplastics and developed for nanoplastics and standardised, in order to assess their presence, identity and to quantify their amount in food. Furthermore, quality assurance should be in place and demonstrated. For microplastics and nanoplastics, occurrence data in food, including effects of food processing, in particular, for the smaller sized particles (< 150 mu m) should be generated. Research on the toxicokinetics and toxicity, including studies on local effects in the gastrointestinal (GI) tract, are needed as is research on the degradation of microplastics and potential formation of nanoplastics in the human GI tract. (C) 2016 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据