4.7 Article

Transmission error model-based optimisation of the geometric design parameters of an automotive transmission gearbox to reduce gear-rattle noise

期刊

APPLIED ACOUSTICS
卷 130, 期 -, 页码 247-259

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apacoust.2017.10.005

关键词

Optimisation; Gear rattle; Torsional vibration; Transmission error

向作者/读者索取更多资源

The optimisation of gearbox geometric design parameters to reduce gear-rattle noise in an automotive transmission based on a transmission error model is presented. Towards this aim, a four-degree-of-freedom torsional vibration model for the geared system is obtained. Differential equations of the pinion gear-wheel gear system are obtained. The state-space forms of the differential equations are obtained. The transmission error of the gear system is calculated via a state-space model. An empirical model is used for rattle noise calculation for the five speed gearbox. The transmission error is considered as the objective function, and bending stress, contact stress and the constant distance between gear centres are considered as constraint functions. By optimising the geometric parameters of the gearbox, such as the module, number of teeth, axial clearance, and backlash, it is possible to obtain a gear structure with high bending and contact strength and to minimise the torsional vibration, transmission error and gear-rattling noise. It is concluded through optimisation that minimising the transmission errors of the gearbox leads to reduced vibration and noise levels of the gearbox. It is determined that the optimised geometric design parameters reduce the calculated rattle noise level by 10% [dB] compared with the sample five-speed gearbox. Furthermore, a 95% reduction in transmission error results in a 12% decrease in rattle noise. All optimised geometric design parameters are significant for the required constraints.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据