4.5 Article

Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer

期刊

BREAST CANCER RESEARCH
卷 18, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13058-016-0713-5

关键词

Breast cancer; Estrogen receptor; Cholesterol biosynthesis; Oxysterol; Transcriptomics; Proteomics

类别

资金

  1. Breast Cancer Now Toby Robins Research Centre
  2. NHS Trust
  3. National Institute for Health Research [NF-SI-0512-10122] Funding Source: researchfish

向作者/读者索取更多资源

Background: Therapies targeting estrogenic stimulation in estrogen receptor-positive (ER+) breast cancer (BC) reduce mortality, but resistance remains a major clinical problem. Molecular studies have shown few high-frequency mutations to be associated with endocrine resistance. In contrast, expression profiling of primary ER+ BC samples has identified several promising signatures/networks for targeting. Methods: To identify common adaptive mechanisms associated with resistance to aromatase inhibitors (AIs), we assessed changes in global gene expression during adaptation to long-term estrogen deprivation (LTED) in a panel of ER+ BC cell lines cultured in 2D on plastic (MCF7, T47D, HCC1428, SUM44 and ZR75.1) or in 3D on collagen (MCF7) to model the stromal compartment. Furthermore, dimethyl labelling followed by LC-MS/MS was used to assess global changes in protein abundance. The role of target genes/proteins on proliferation, ER-mediated transcription and recruitment of ER to target gene promoters was analysed. Results: The cholesterol biosynthesis pathway was the common upregulated pathway in the ER+ LTED but not the ER-LTED cell lines, suggesting a potential mechanism dependent on continued ER expression. Targeting the individual genes of the cholesterol biosynthesis pathway with siRNAs caused a 30-50 % drop in proliferation. Further analysis showed increased expression of 25-hydroxycholesterol (HC) in the MCF7 LTED cells. Exogenous 25-HC or 27-HC increased ER-mediated transcription and expression of the endogenous estrogen-regulated gene TFF1 in ER+ LTED cells but not in the ER-LTED cells. Additionally, recruitment of the ER and CREB-binding protein (CBP) to the TFF1 and GREB1 promoters was increased upon treatment with 25-HC and 27-HC. In-silico analysis of two independent studies of primary ER+ BC patients treated with neoadjuvant AIs showed that increased expression of MSMO1, EBP, LBR and SQLE enzymes, required for cholesterol synthesis and increased in our in-vitro models, was significantly associated with poor response to endocrine therapy. Conclusion: Taken together, these data provide support for the role of cholesterol biosynthesis enzymes and the cholesterol metabolites, 25-HC and 27-HC, in a novel mechanism of resistance to endocrine therapy in ER+ BC that has potential as a therapeutic target.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据