3.8 Article

Development of a Fast-Acting, Time-Resolved Gas Sampling System for Combustion and Fuels Analysis

期刊

SAE INTERNATIONAL JOURNAL OF ENGINES
卷 9, 期 2, 页码 1102-1116

出版社

SAE INT
DOI: 10.4271/2016-01-0791

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [EP/M007960/1, EP/M009424/1] Funding Source: researchfish
  2. EPSRC [EP/M009424/1, EP/M007960/1] Funding Source: UKRI

向作者/读者索取更多资源

Development of new fuels and engine combustion strategies for future ultra-low emission engines requires a greater level of insight into the process of emissions formation than is afforded by the approach of engine exhaust measurement. The paper describes the development of an in-cylinder gas sampling system consisting of a fast-acting, percussion-based, poppet-type sampling valve, and a heated dilution tunnel; and the deployment of the system in a single cylinder engine. A control system was also developed for the sampling valve to allow gas samples to be extracted from the engine cylinder during combustion, at any desired crank angle in the engine cycle, while the valve motion was continuously monitored using a proximity sensor. The gas sampling system was utilised on a direct injection diesel engine co-combusting a range of hydrogen-diesel fuel and methane-diesel fuel mixtures. In-cylinder gas sample composition was investigated at two sampling locations; within the diesel fuel spray and between adjacent spray cones. Concentrations of NOx were found to be higher between the two diesel sprays relative to within the spray cone for both hydrogen and methane addition. In the case of hydrogen-diesel fuel co-combustion, the particulate levels were observed to be higher in the diesel fuel spray relative to between two sprays; however, in the case of methane-diesel fuel co-combustion, higher particulate levels were measured in the region between the two sprays. This was attributed to methane contributing significant quantities of particulates to the total particulate concentration produced from the methane-diesel fuel mixture in between two sprays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据