4.7 Article

Carbon Monoxide Inhibits Islet Apoptosis via Induction of Autophagy

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 28, 期 14, 页码 1309-1322

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2016.6979

关键词

carbon monoxide; autophagy; islet; apoptosis

资金

  1. National Institutes of Health [EB015744, DK097544, DK105183, DK099696]
  2. NIH [DK079879, DK090115, DK107412]
  3. National Institute on Aging [AG028740]

向作者/读者索取更多资源

Aim: Carbon monoxide (CO) functions as a therapeutic molecule in various disease models because of its anti-inflammatory and antiapoptotic properties. We investigated the capacity of CO to reduce hypoxia-induced islet cell death and dysfunction in human and mouse models. Results: Culturing islets in CO-saturated medium protected them from hypoxia-induced apoptosis and preserved beta cell function by suppressing expression of proapoptotic (Bim, PARP, Cas-3), proinflammatory (TNF-alpha), and endoplasmic reticulum (ER) stress (glucose-regulated protein 94, grp94, CHOP) proteins. The prosurvival effects of CO on islets were attenuated when autophagy was blocked by specific inhibitors or when either ATG7 or ATG16L1, two essential factors for autophagy, was downregulated by siRNA. In vivo, CO exposure reduced both inflammation and cell death in grafts immediately after transplantation, and enhanced long-term graft survival of CO-treated human and mouse islet grafts in streptozotocin-induced diabetic non-obese diabetic severe combined immunodeficiency (NOD-SCID) or C57BL/6 recipients. Innovation: These findings underline that pretreatment with CO protects islets from hypoxia and stress-induced cell death via upregulation of ATG16L1-mediated autophagy. Conclusion: Our results suggested that CO exposure may provide an effective means to enhance survival of grafts in clinical islet cell transplantation, and may be beneficial in other diseases in which inflammation and cell death pose impediments to achieving optimal therapeutic effects. Antioxid. Redox Signal. 00, 000-000.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据