4.6 Review Book Chapter

First-Principles Statistical Mechanics of Multicomponent Crystals

期刊

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-matsci-070317-124443

关键词

thermodynamics; diffusion; statistical mechanics; effective Hamiltonians; Monte Carlo; order-disorder; magnetism; dynamical instabilities; anharmonicity

资金

  1. Division Of Materials Research [1410242] Funding Source: National Science Foundation

向作者/读者索取更多资源

The importance of configurational, vibrational, and electronic excitations in crystalline solids of technological interest makes a rigorous treatment of thermal excitations an essential ingredient in first-principles models of materials behavior. This contribution reviews statistical mechanics approaches that connect a crystal's electronic structure to its thermodynamic and kinetic properties. We start with a description of a thermodynamic and kinetic framework for multicomponent crystals that integrates chemistry and mechanics, as well as nonconserved order parameters that track the degree of chemical order and group/subgroup structural distortions. The framework allows for spatial heterogeneities and naturally couples thermodynamics with kinetics. We next survey statistical mechanics approaches that rely on effective Hamiltonians to treat configurational, vibrational, and electronic degrees of freedom within multicomponent crystals. These Hamiltonians, when suitably constructed, are capable of extrapolating first-principles electronic structure calculations within (kinetic) Monte Carlo simulations, thereby enabling first-principles predictions of equilibrium and nonequilibrium materials properties at finite temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据