4.6 Article

Unified ab initio formulation of flexoelectricity and strain-gradient elasticity

期刊

PHYSICAL REVIEW B
卷 93, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.93.245107

关键词

-

资金

  1. MINECO-Spain [FIS2013-48668-C2-2-P]
  2. MINECO-Spain through the Severo Ochoa Programme for Centres of Excellence in RD [SEV-2015-0496]
  3. Generalitat de Catalunya [2014 SGR301]
  4. ICREA Funding Source: Custom

向作者/读者索取更多资源

The theory of flexoelectricity and that of nonlocal elasticity are closely related, and are often considered together when modeling strain-gradient effects in solids. Here I show, based on a first-principles lattice-dynamical analysis, that their relationship is much more intimate than previously thought, and their consistent simultaneous treatment is crucial for obtaining correct physical answers. In particular, I identify a gauge invariance in the theory, whereby the energies associated to strain-gradient elasticity and flexoelectrically induced electric fields are individually reference dependent, and only when summed up they yield a well-defined result. To illustrate this, I construct a minimal thermodynamic functional incorporating strain-gradient effects, and establish a formal link between the continuum description and ab initio phonon dispersion curves to calculate the relevant tensor quantities. As a practical demonstration, I apply such a formalism to bulk SrTiO3, where I find an unusually strong contribution of nonlocal elasticity, mediated by the interaction between the ferroelectric soft mode and the transverse acoustic branches. These results have important implications towards the construction of well-defined thermodynamic theories where flexoelectricity and ferroelectricity coexist. More generally, they open exciting new avenues for the implementation of hierarchical multiscale concepts in the first-principles simulation of crystalline insulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据