4.5 Article

GAUSSIAN AND NON-GAUSSIAN FLUCTUATIONS FOR MESOSCOPIC LINEAR STATISTICS IN DETERMINANTAL PROCESSES

期刊

ANNALS OF PROBABILITY
卷 46, 期 3, 页码 1201-1278

出版社

INST MATHEMATICAL STATISTICS
DOI: 10.1214/17-AOP1178

关键词

Gaussian unitary ensemble; determinantal point processes; central limit theorem; cumulant method; transition

资金

  1. Knut and Alice Wallenberg Foundation [KAW 2010.0063]

向作者/读者索取更多资源

We study mesoscopic linear statistics for a class of determinantal point processes which interpolate between Poisson and random matrix statistics. These processes are obtained by modifying the spectrum of the correlation kernel of the Gaussian Unitary Ensemble (GUE) eigenvalue process. An example of such a system comes from considering the distribution of noncolliding Brownian motions in a cylindrical geometry, or a grand canonical ensemble of free fermions in a quadratic well at positive temperature. When the scale of the modification of the spectrum of the correlation kernel, related to the size of the cylinder or the temperature, is different from the scale in the mesoscopic linear statistic, we obtain a central limit theorem (CLT) of either Poisson or GUE type. On the other hand, in the critical regime where the scales are the same, we observe a non-Gaussian process in the limit. Its distribution is characterized by explicit but complicated formulae for the cumulants of smooth linear statistics. These results rely on an asymptotic sinekernel approximation of the GUE kernel which is valid at all mesoscopic scales, and a generalization of cumulant computations of Soshnikov for the sine process. Analogous determinantal processes on the circle are also considered with similar results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据