4.6 Article

Mechanical traits of fine roots as a function of topology and anatomy

期刊

ANNALS OF BOTANY
卷 122, 期 7, 页码 1103-1116

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcy076

关键词

Biomechanics; tensile strength; modulus of elasticity; tensile strain; root diameter; fine roots; root topology; root anatomy

资金

  1. French-Chinese Xuguangqi program [34442WB]
  2. BMU (Germany) International Climate Initiative funded project Ecosystems Protecting Infrastructure and Communities (EPIC)

向作者/读者索取更多资源

Background and Aims Root mechanical traits, including tensile strength (T-r), tensile strain (epsilon(r)) and modulus of elasticity (E-r), are key functional traits that help characterize plant anchorage and the physical contribution of vegetation to landslides and erosion. The variability in these traits is high among tree fine roots and is poorly understood. Here, we explore the variation in root mechanical traits as well as their underlying links with morphological (diameter), architectural (topological order) and anatomical (stele and cortex sizes) traits. Methods We investigated the four tropical tree species Pometia tomentosa, Barringtonia fusicarpa, Baccaurea ramiflora and Pittosporopsis kerrii in Xishuangbanna, Yunnan, China. For each species, we excavated intact, fresh, fine roots and measured mechanical and anatomical traits for each branching order. Key Results Mechanical traits varied enormously among the four species within a narrow range of diameters (<2 mm): <0.1-65 MPa for T-r, 4-1135 MPa for E-r and 0.4-37 % for epsilon(r). Across species, T-r and E-r were strongly correlated with stele area ratio, which was also better correlated with topological order than with root diameter, especially at interspecific levels. Conclusions Root topological order plays an important role in explaining variability in fine-root mechanical traits due to its reflection of root tissue development. Accounting for topological order when measuring fine-root traits therefore leads to greater empirical understanding of plant functions (e.g. anchorage) within and across species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据