4.6 Article

Giant enhancement of optical high-order sideband generation and their control in a dimer of two cavities with gain and loss

期刊

PHYSICAL REVIEW A
卷 93, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.93.063814

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [11375067, 11574104]
  2. National Basic Research Program of China (973 Program) [2012CB922103]

向作者/读者索取更多资源

Parity-time (PT) symmetric systems, which rely on the balanced gain-loss condition and render the Hamiltonian non-Hermitian, have provided a new platform to engineer effective light-matter interactions in recent years. Here we explore the high-order sideband features of the output fields obtained from a PT-symmetric optical system consisting of a passive nonlinear cavity coupled to an active linear cavity. By employing a perturbation technique, we derive analytic formulas used to determine the nonlinear transmission coefficient of optical second-order sideband in this structure. Using experimentally achievable parameters, it is clearly shown that the efficiency of the second-order sideband generation can be greatly enhanced in the PT-symmetric dimer, extremely in the vicinity of the transition point from unbroken-to broken-PT regimes. Moreover, we further analyzed the influences of the system parameters, including the photon-tunneling rate between two cavities, Kerr nonlinearity strength, and optical detuning, on the second-order sideband generation. Subsequently we investigate the higher-order sideband output spectrum by numerical simulations, where the sideband amplitude also is largely enhanced in the PT-symmetric arrangement, compared with the passive-passive double-cavity system. Our obtained results provide a new avenue for acquiring optical high-order sidebands and operating light, which may inspire further applications in chip-scale optical communications and optical frequency combs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据