4.8 Article

Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles

期刊

ANALYTICAL CHEMISTRY
卷 90, 期 3, 页码 1959-1966

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b04048

关键词

-

资金

  1. Japan Society for the Promotion of Science (JSPS) [JP17K17941, JP16K18248]
  2. Cooperative Research Program of the Network Joint Research Center for Materials and Devices

向作者/读者索取更多资源

Selectivity is an important parameter of resistive type gas sensors that use metal oxides. In this study, a highly selective toluene sensor is prepared using highly dispersed gold-nanoparticle-loaded zinc oxide nanoparticles (Au-ZnO NPs). Au-ZnO NPs are synthesized by coprecipitation and calcination at 400 degrees C with Au loadings of 0.15, 0.5, and 1.5 mol %. The Au NPs on ZnO are about 2-4 nm in size, and exist in a metallic state. Porous gas-sensing layers are fabricated by screen printing. The responses of the sensor to 200 ppm hydrogen, 200 ppm carbon monoxide, 100 ppm ethanol, 100 ppm acetaldehyde, 100 ppm acetone, and 100 ppm toluene are evaluated at 377 degrees C in a dry atmosphere. The sensor response of 0.15 mol % Au-ZnO NPs to toluene is about 92, whereas its sensor responses to other combustible gases are less than 7. Such selective toluene detection is probably caused by the utilization efficiency of the gas-sensing layer. Gas diffusivity into the sensing layer of Au-ZnO NPs is lowered by the catalytic oxidation of combustible gases during their diffusion through the layer. The present approach is an effective way to improve the selectivity of resistive-type gas sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据