4.8 Article

Real-Time Detection of Melatonin Using Fast-Scan Cyclic Voltammetry

期刊

ANALYTICAL CHEMISTRY
卷 90, 期 14, 页码 8642-8650

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b01976

关键词

-

资金

  1. Department of Chemistry at the University of Cincinnati

向作者/读者索取更多资源

Melatonin is an important hormone whose functions span from regulating circadian rhythm in the brain to providing anti-inflammatory properties in the immune system. Melatonin secretion from the pineal gland is known; however, the mechanism of melatonin signaling in the immune system is not well understood. The lymph node is the hub of the immune system, and melatonin secretion from lymphocytes was proposed to be an important source specifically for regulating cytokine secretion. Methods exist to quantify the concentration of melatonin within biological samples; however, they often suffer from either a lack of selectivity for melatonin over common biological interferences or temporal resolution, which is not amenable to measuring real-time signaling dynamics. Here, we have characterized an electrochemical method for optimal melatonin detection with subsecond resolution using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. The oxidation peaks detected for melatonin were at 1.0, 1.1, and 0.6 V. Evidence for electrode fouling of the tertiary peak was present; therefore, an optimized waveform was developed scanning from 0.2 to 1.3 Vat 600 V/s. The optimized waveform eliminated the detection of fouling products on the electrode with a 24 +/- 10 nM limit of detection. Melatonin was distinguished between biological interferences, and codetection with the major synthetic precursor, serotonin, was possible. This method was used to detect melatonin in live lymph node slices and provides the first real-time measurements within the lymph node using FSCV. Real-time detection of melatonin dynamics could provide useful information on the mechanism of immunomodulation during inflammatory disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据