4.8 Article

Development of Comprehensive Online Two-Dimensional Liquid Chromatography/Mass Spectrometry Using Hydrophilic Interaction and Reversed-Phase Separations for Rapid and Deep Profiling of Therapeutic Antibodies

期刊

ANALYTICAL CHEMISTRY
卷 90, 期 9, 页码 5923-5929

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b00776

关键词

-

资金

  1. United States National Science Foundation [CHE-1508159]
  2. Thought Leader Award from Agilent Technologies
  3. Swiss National Science Foundation [31003A159494]
  4. Division Of Chemistry
  5. Direct For Mathematical & Physical Scien [1508159] Funding Source: National Science Foundation

向作者/读者索取更多资源

Monoclonal antibodies (mAb) and related molecules are being developed at a remarkable pace as new therapeutics for the treatment of diseases ranging from cancer to inflammatory disorders. However, characterization of these molecules at all stages of development and manufacturing presents tremendous challenges to existing analytical technologies because of their large size (ca. 150 kDa) and inherent heterogeneity resulting from complex glycosylation patterns and other post -translational modifications. Multidimensional liquid chromatography is emerging as a powerful platform technology that can be used to both improve analysis speed for these molecules by combining existing one-dimensional separations into a single method (e.g., Protein A affinity separation and size-exclusion chromatography) and increasing the resolving power of separations by moving from one dimension of separation to two. In the current study, we have demonstrated the ability to combine hydrophilic interaction (HILIC) and RP separations in an online comprehensive 2D separation coupled with high resolution MS detection (HILIC X RP-HRMS). We find that active solvent modulation (ASM) is critical for coupling these two separation modes, because it mitigates the otherwise serious negative impact of the acetonitrile-rich HILIC mobile phase on the second dimension RP separation. The chromatograms obtained from these HILIC X RP-HRMS separations of mAbs at the subunit level reveal the extent of glycosylation on the Fc/2 and Fd subunits in analysis times on the order of 2 h. In comparison to previous CEX x RP separations of the same molecules, we find that chromatograms from the HILIC X RP separations are richer and reveal separation of some glycoforms that coelute in the CEX X RP separations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据