4.8 Article

Tuned Amperometric Detection of Reduced beta-Nicotinamide Adenine Dinucleotide by Allosteric Modulation of the Reductase Component of the p-Hydroxyphenylacetate Hydroxylase Immobilized within a Redox Polymer

期刊

ANALYTICAL CHEMISTRY
卷 90, 期 9, 页码 5703-5711

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b05467

关键词

-

资金

  1. Thailand Research Fund through a grant from the respected Royal Golden Jubilee Ph.D. Program [PHD/0160/2557]
  2. Deutsche Forschungsgemeinschaft (DFG) [EXC1069]
  3. European Commission within the Marie-Curie project Bioenergy [PITN-GA-2013-607793]
  4. Thailand Research Fund [RTA5980001]

向作者/读者索取更多资源

We report the fabrication of an amperometric NADH biosensor system that employs an allosterically modulated bacterial reductase in an adapted osmium(III)-complex-modified redox polymer film for analyte quantification. Chains of complexed Os(III) centers along matrix polymer strings make electrical connection between the immobilized redox protein and a graphite electrode disc, transducing enzymatic oxidation of NADH into a biosensor current. Sustainable anodic signaling required (1) a redox polymer with a formal potential that matched the redox switch of the embedded reductase and avoided interfering redox interactions and (2) formation of a cross-linked enzyme/polymer film for stable biocatalyst entrapment. The activity of the chosen reductase is enhanced upon binding of an effector, i.e. p-hydroxy-phenylacetic acid (p-HPA), allowing the acceleration of the substrate conversion rate on the sensor surface by in situ addition or preincubation with p-HPA. Acceleration of NADH oxidation amplified the response of the biosensor, with a 1.5-fold increase in the sensitivity of analyte detection, compared to operation without the allosteric modulator. Repetitive quantitative testing of solutions of known NADH concentration verified the performance in terms of reliability and analyte recovery. We herewith established the use of allosteric enzyme modulation and redox polymer-based enzyme electrode wiring for substrate biosensing, a concept that may be applicable to other allosteric enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据