4.7 Article

Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites

期刊

ANALYTICA CHIMICA ACTA
卷 1037, 期 -, 页码 265-273

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2018.02.054

关键词

Ion mobility spectrometry; Collision cross section; Xenobiotics; Polycyclic aromatic hydrocarbons; Polychlorinated biphenyls; Polybrominated diphenyl ethers; Electrospray ionization; Atmospheric pressure chemical ionization; Atmospheric pressure photoionization

资金

  1. National Institute of Environmental Health Sciences of the NIH [R01 ES022190]
  2. National Institute of General Medical Sciences [P41 GM103493]
  3. NIH [P42 ES027704]
  4. Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory
  5. U.S. Department of Energy Office of Biological and Environmental Research Genome Sciences Program
  6. DOE [DE-AC05-76RL0 1830]

向作者/读者索取更多资源

Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making their studies extremely time consuming. In this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). The collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据