4.6 Article

Cavity enhanced liquid-phase stopped-flow kinetics

期刊

ANALYST
卷 143, 期 2, 页码 493-502

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7an01823a

关键词

-

资金

  1. Iraqi Government

向作者/读者索取更多资源

The first application of liquid-phase broadband cavity enhanced spectroscopy (BBCEAS) to the measurement of stopped-flow kinetics is reported. The stopped-flow technique is widely used for the study of the kinetics of fast liquid-phase reactions down to millisecond timescales. UV-visible absorption spectroscopy is commonly used as the detection method. Increased sensitivity can potentially allow reactions which are too fast to be measured, to be studied by slowing down the reaction rate through the use of lower concentration of reactants. A simple low cost BBCEAS experimental setup was coupled to a commercial stopped-flow instrument. Comparative standard absorption measurements were also made using a UV-visible double-beam spectrometer as the detector. Measurements were made on the reaction of potassium ferricyanide with sodium ascorbate under pseudo-first order conditions at pH 8 and pH 9.2 A cavity enhancement factor (CEF) of 78 at 434 nm was obtained whilst the minimum detectable change in the absorption coefficient alpha(min)(t), was 1.35 x 10(-5) cm(-1) Hz(-1/2). The kinetic data at pH 9.2 was too fast to be measured using conventional spectroscopy, whilst the BBCEAS measurements allowed 30 fold lower concentration of reactants to be used which slowed down the reaction rate enough to allow the rate constant to be determined. The BBCEAS results showed a 58 fold improvement in sensitivity over the conventional measurements and also compared favourably with the relatively few previous liquid-phase cavity enhanced kinetic studies which have been performed using significantly more complex and expensive experimental setups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据