4.3 Article

Long-term treatment with the ghrelin receptor antagonist [D-Lys3]-GHRP-6 does not improve glucose homeostasis in nonobese diabetic MKR mice

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00157.2017

关键词

GHS-R antagonists; type 2 diabetes; insulin; pancreatic islets; hypothalamus

资金

  1. National Health and Medical Research Council
  2. National Cancer Institute [2R01-CA-128799-06A1]
  3. Egyptian Higher Education Ministry Scholarships
  4. University of Queensland Tuition Fees Award
  5. Australian Postgraduate Award Scholarship

向作者/读者索取更多资源

Ghrelin secretion has been associated with increased caloric intake and adiposity. The expressions of ghrelin and its receptor (GHS-R1a) in the pancreas has raised the interest about the role of ghrelin in glucose homeostasis. Most of the studies showed that ghrelin promoted hyperglycemia and inhibited insulin secretion. This raised the interest in using GHS-R1a antagonists as therapeutic targets for type 2 diabetes. Available data of GHS-R antagonists are on a short-term basis. Moreover, the complexity of GHS-R1a signaling makes it difficult to understand the mechanism of action of GHS-R1a antagonists. This study examined the possible effects of long-term treatment with a GHS-R1a antagonist, [D-Lys3]-growth hormone-releasing peptide (GHRP)-6, on glucose homeostasis, food intake, and indirect calorimetric parameters in nonobese diabetic MKR mice. Our results showed that [D-Lys3]-GHRP-6 (200 nmol/mouse) reduced pulsatile growth hormone secretion and body fat mass as expected but worsened glucose and insulin intolerances and increased cumulative food intake unexpectedly. In addition, a significant increase in blood glucose and decreases in plasma insulin and C-peptide levels were observed in MKR mice following long-term [D-Lys3]-GHRP-6 treatment, suggesting a direct inhibition of insulin secretion. Immunofluorescence staining of pancreatic islets showed a proportional increase in somatostatin-positive cells and a decrease in insulin-positive cells in [D-Lys3]-GHRP-6-treated mice. Furthermore, [D-Lys3]-GHRP-6 stimulated food intake on long-term treatment via reduction of proopiomelanocortin gene expression and antagonized GH secretion via reduced growth hormone-releasing hormone gene expression in hypothalamus. These results demonstrate that [D-Lys3]-GHRP-6 is not completely opposite to ghrelin and may not be a treatment option for type 2 diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据