4.3 Article

ZnT2 is critical for lysosome acidification and biogenesis during mammary gland involution

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00444.2017

关键词

acidification; involution; lysosome; mammary gland; SLC30A2; v-ATPase; zinc; ZnT2

资金

  1. Penn State Hershey Department of Surgery
  2. Ruth Pike Graduate Fellowship

向作者/读者索取更多资源

Mammary gland involution, a tightly regulated process of tissue remodeling by which a lactating mammary gland reverts to the prepregnant state, is characterized by the most profound example of regulated epithelial cell death in normal tissue. Defects in the execution of involution are associated with lactation failure and breast cancer. Initiation of mammary gland involution requires upregulation of lysosome biogenesis and acidification to activate lysosome-mediated cell death; however, specific mediators of this initial phase of involution are not well described. Zinc transporter 2 [ZnT2 (SLC30A2)] has been implicated in lysosome biogenesis and lysosome-mediated cell death during involution; however, the direct role of ZnT2 in this process has not been elucidated. Here we showed that ZnT2-null mice had impaired alveolar regression and reduced activation of the involution marker phosphorylated Stat3, indicating insufficient initiation of mammary gland remodeling during involution. Moreover, we found that the loss of ZnT2 inhibited assembly of the proton transporter vacuolar ATPase on lysosomes, thereby decreasing lysosome abundance and size. Studies in cultured mammary epithelial cells revealed that while the involution signal TNF alpha promoted lysosome biogenesis and acidification, attenuation of ZnT2 impaired the lysosome response to this involution signal, which was not a consequence of cytoplasmic Zn accumulation. Our findings establish ZnT2 as a novel regulator of vacuolar ATPase assembly, driving lysosome biogenesis, acidification, and tissue remodeling during the initiation of mammary gland involution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据