4.7 Article

Deuterium target data for precision neutrino-nucleus cross sections

期刊

PHYSICAL REVIEW D
卷 93, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.93.113015

关键词

-

资金

  1. NSF [1306944]
  2. DOE [DE-FG02-13ER41958, DE-AC05-06OR23100]
  3. CETUP* (Center for Theoretical Underground Physics and Related Areas)
  4. U.S. Department of Energy. Office of Science Graduate Student Research (SCGSR) program
  5. Direct For Mathematical & Physical Scien [1306944] Funding Source: National Science Foundation
  6. Direct For Mathematical & Physical Scien
  7. Division Of Physics [1607381] Funding Source: National Science Foundation
  8. Division Of Physics [1306944] Funding Source: National Science Foundation

向作者/读者索取更多资源

Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, F-A(q(2)), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of F-A from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to r(A)(2) = 0.46(22) m(2), with a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as sigma(v(mu)n -> mu(-)p)vertical bar E-nu=1 GeV = 10.1(0.9) x 10(-39) cm(2). The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. These techniques can be readily extended to other amplitudes and processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据